Statistical Learning in Wasserstein Space

نویسندگان

چکیده

We seek a generalization of regression and principle component analysis (PCA) in metric space where data points are distributions metrized by the Wasserstein metric. recast these analyses as multimarginal optimal transport problems. The particular formulation allows efficient computation, ensures existence solutions, admits probabilistic interpretation over paths (line segments). Application theory to interpolation empirical distributions, images, power spectra, well assessing uncertainty experimental designs, is envisioned.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning in Wasserstein Space

Learning from empirical probability measures is an emerging problem that has potential benefiting multiple domains. My research focuses on developing scalable and effective learning algorithms that handle large-scale data in form of measures. In particular, the Wasserstein space provides a powerful geometry that houses the compositions of data, which can be of great interest to domain experts t...

متن کامل

Wasserstein Distributional Robustness and Regularization in Statistical Learning

A central question in statistical learning is to design algorithms that not only perform well on training data, but also generalize to new and unseen data. In this paper, we tackle this question by formulating a distributionally robust stochastic optimization (DRSO) problem, which seeks a solution that minimizes the worstcase expected loss over a family of distributions that are close to the em...

متن کامل

Minimax Statistical Learning and Domain Adaptation with Wasserstein Distances

As opposed to standard empirical risk minimization (ERM), distributionally robust optimization aims to minimize the worst-case risk over a larger ambiguity set containing the original empirical distribution of the training data. In this work, we describe a minimax framework for statistical learning with ambiguity sets given by balls in Wasserstein space. In particular, we prove a generalization...

متن کامل

Barycenters in the Wasserstein Space

In this paper, we introduce a notion of barycenter in the Wasserstein space which generalizes McCann’s interpolation to the case of more than two measures. We provide existence, uniqueness, characterizations and regularity of the barycenter, and relate it to the multimarginal optimal transport problem considered by Gangbo and Świȩch in [8]. We also consider some examples and in particular rigor...

متن کامل

Hamilton-jacobi Equations in the Wasserstein Space

Abstract. We introduce a concept of viscosity solutions for Hamilton-Jacobi equations (HJE) in the Wasserstein space. We prove existence of solutions for the Cauchy problem for certain Hamiltonians defined on the Wasserstein space over the real line. In order to illustrate the link between HJE in the Wasserstein space and Fluid Mechanics, in the last part of the paper we focus on a special Hami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Control Systems Letters

سال: 2021

ISSN: ['2475-1456']

DOI: https://doi.org/10.1109/lcsys.2020.3006965